
Authors: C. Mitchell, V. P. Munishwar, S. Singh, X Wang, K. Gopalan, N. B. Abu-Ghazaleh

Presented by: Vikram P. Munishwar
Outline

- Introduction
- The MiNT-2 Node Architecture
- RFID-based Localization
- Experimental Evaluation
- Conclusion & Future Work
Introduction

- Two predominant techniques for wireless protocols development and evaluation:
 - Simulations (NS2, QualNet, GlomoSim)
 - Difficult to capture real-world RF propagation characteristics such as: *Non-uniform path loss, interference, multipath fading*
 - Large-scale, custom-built testbeds (Roofnet, CMU Network)
 - *Limited scenarios, large physical-space requirement, expensive for setup and routine maintenance*
Small-scale testbeds

- **MiNT (Miniaturized Network Testbed):**
 - Originally developed at the *Stony Brook University*
 - Combines benefits of both simulations and large-scale testbeds

- **Architectural Features:**
 - **Mobility:** by mounting embedded computing boards on robots
 - **Miniaturization:** using RF attenuation & Tx-power control
Small-scale testbeds

- ORBIT
 - Topology formation: Explicit noise-injection to control pair-wise SNR
 - Mobility: based on migration of execution state

- Mobile Emulab
 - Motes mounted on robotic platforms
 - Needs manual recharging of robots

- CMU Wireless Emulator
 - Emulation of RF propagation (FPGA based DSP Engine)
 - Performance depends on accuracy of models
Localization Techniques

To accurately estimate the nodes positions for:
- Automatic topology formation & reconfiguration
- Providing fairly accurate node mobility

Vision based localization
- Cameras mounted on ceiling
- High accuracy when calibrated
- However, inaccuracy may grow over time due to:
 - Slight camera movements
 - Fading of color patterns

Infrared/Ultrasonic localization
- Expensive in terms of the cost and processing capacity required
- Needs line-of-sight
Contributions

MiNT-2: The next generation of the original MiNT testbed.

- **Node design:** Reproducing the testbed using efficient but inexpensive hardware
- **Decentralized localization:** RFID-based localization mechanism
Outline

- Introduction
- The MiNT-2 Node Architecture
- RFID-based Localization
- Experimental Evaluation
- Conclusion & Future Work
The MiNT-2 Node
(Architecture)
The MiNT Node

(Mobility & Miniaturization)

- **Mobility base:** Create robot
 - Wide range of 2D mobility:
 - Forward and reverse straight lines, Arcs of arbitrary radius, Rotation in place
 - Well-powered
 - Up to 4 hours of battery life

- **Miniaturization:**
 - 20dB fixed attenuator
 - Transmission power control
The MiNT Node
(Processing)

- Soekris net5501 x86 embedded board
- 433MHz processor
- 256MB RAM
- 2GB Flash card
- Support for external router board
The MiNT Node

(Wireless Communication)

- One 802.11g interface used for control
- Up to four simultaneous 802.11a interfaces for experiments
The MiNT Node
(Localization Hardware)

- **RFID**: Radio Frequency Identification
 - *Passive* RFID technology
 - Short-distance reading range
 - Inexpensive tags and readers

- **RFID Reader**
 - mounted on the base of each robot
 - Connected via serial interface to the Soekris board

- **RFID Tag**
 - Array of tags on floor
 - Each RFID tag is associated with (x,y) coordinate

- **Error margin for position estimation**: 2.25cm
Outline

- Introduction
- The MiNT-2 Node Architecture
- RFID-based Localization
- Experimental Evaluation
- Conclusion & Future Work
RFID-based Localization
(Motivation)

- Localization support from iRobot Create
 - Angle and distance sensors (readings w.r.t. last query)
 - Significant inaccuracies due to:
 - rounding error,
 - wheel slippage,
 - encoder error

Thus, a need for additional localization mechanism.
RFID-based Localization
(Advantages)

- Position error is bounded by the reading range of the tag
- Each node can independently determine its own position – thus, easily scalable
- Inexpensive in terms of processing and overall cost
- No line-of-sight requirement
RFID-based Localization

(Approach)

- Position calibration: upon tag detection
- Frequency of reading position sensors: 50 milliseconds
- Orientation calibration:
 - Necessary to estimate position between two tags

\[\theta = (\tan^{-1}[(y_2 - y_1)/(x_2 - x_1)] + \theta_{\text{RFID}/2}) \mod 360 \]
RFID-based Localization

- Initial calibration:
 - To support dropping off of the robot at any place in the testbed
 - Cross two tags in a straight line to determine orientation
Outline

- Introduction
- The MiNT-2 Node Architecture
- RFID-based Localization
- Experimental Evaluation
- Conclusion & Future Work
The MiNT Node
(Energy dissipation)

Idle: 3 hours 55 minutes
Constant WiFi Transmission: 3 hours 36 minutes
Constant Movement: 2 hours 15 minutes
Experimental Evaluation

(RF Attenuation)
Experimental Evaluation

(Localization)

- Sensors-based vs RFIDs-based localization

Position error has been reduced to avg. 6cm with more recent improvements
Experimental Evaluation

(Localization)

- Effect of parameters: Robot velocity
Outline

- Introduction
- The MiNT-2 Node Architecture
- RFID-based Localization
- Experimental Evaluation
- Conclusion & Future Work
Conclusion & Future Work

- In this work, we proposed
 - Design and construction of MiNT-2 nodes
 - Design and development of RFID-based localization mechanism

- In future, we plan to
 - Improve the accuracy of the localization technique
 - Automatic topology formation
 - Fault injection support
Thank you!
Questions?
The MiNT Node

(Processing)

- Operating System: Voyage Linux
 - Debian-based, light Linux distribution
 - Preconfigured for Soekris net5501
 - Designed to run off a Compact Flash card
 - Optimized to minimize writes

- Distributed, hybrid NS2
 - Pass packets over physical network interfaces
 - Maintain ability to run NS2 scripts
The MiNT-2 Node

(Cost)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>iRobot Create with battery and charger</td>
<td>$250</td>
</tr>
<tr>
<td>Soekris net5501 x86 embedded board</td>
<td>$260</td>
</tr>
<tr>
<td>PCI to 4x miniPCI adapter card</td>
<td>$65</td>
</tr>
<tr>
<td>4x R52 802.11a/b/g cards</td>
<td>$200</td>
</tr>
<tr>
<td>4x antennae</td>
<td>$60</td>
</tr>
<tr>
<td>3x attenuators</td>
<td>$100</td>
</tr>
<tr>
<td>ID-12 RFID reader</td>
<td>$30</td>
</tr>
<tr>
<td>Small miscellaneous components</td>
<td>$35</td>
</tr>
<tr>
<td>Total</td>
<td>$1000</td>
</tr>
</tbody>
</table>
Experimental Evaluation
(Sensors Accuracy)

- Distance Sensor

![Graph showing position error vs. distance between tags.](image)

- RFID tags deployment: Uniform
- Straight line movement
Experimental Evaluation
(Sensors Accuracy)

- **Angle Sensor**

- RFID tags deployment: Pyramid-like structure
- Straight line movement from the tip to the base
Experimental Evaluation

(Localization)

- Effect of parameters: frequency of updates