Handling Very Large Numbers of Messages in Distributed Hash Tables

Fabius Klemm

Jean-Yves Le Boudec, Dejan Kostic, Karl Aberer
Contribution

• Analysis:
 – A DHT can suffer a congestion collapse

• Emulation + PlanetLab results:
 – Evaluation of different congestion control algorithms for DHTs
Motivation

• Peer-to-Peer Information Retrieval
• Goal: Build an P2P-IR System for the WWW that scales with millions of peers
Overview of P2P-IR

Extract indexing features

Term → Doc ID

Insert into index

Distributed Hash Table
Problem: Long Posting Lists

- **DHT key**: set of terms
- **DocID**: short posting list
- **term → DocID**: Many small packets
- **key → DocID**: Experimental results:
 - 5,000 documents
 - 8,000,000 keys
Congestion Control for DHTs

- Initial DHT design was for moderate loads
 - File sharing, name resolution
- New demands
 - Insert billions of small packets into a DHT
 - **High throughput**: Maximize the number of insert operations per peer per time unit
 - **Low latency**
Congestion in DHTs

• What is congestion?
 – A peer receives more packets than it can handle

• Reasons for congestion:
 – High load
 – Heterogeneous peers
 • Link bandwidth, CPU
 – Skewed traffic

• Independent of the routing protocol

• Recursive routing
Congestion Collapse Analysis

• Goal of this analysis:
 – Show what happens in a DHT without Congestion Control

• Given:
 – Given a DHT with \(n \) peers
 – Each peer has a capacity \(c \) [msg/s]
 – Each peer inserts new requests with a certain rate \(r \) [msg/s]

 – If the offered traffic exceeds the available capacity, requests are dropped

 – What is the achieved throughput?
Congestion Collapse

- Example: DHT with 1 million peers
Solutions

Congestion control (a.k.a. rate control)
 – Avoid that the DHT is overloaded with packets

Two approaches:
 – Hop-by-hop: Back-pressure along relaying peers (local feedback)
 – End-to-end: Peers adapt their insertion rates using global feedback from the overlay network
1. Back-Pressure Congestion Control

• Hop-by-hop

• **Block** sending peers when incoming queue is full
 → No packets are dropped

• Problems?
Problems with Back-Pressure

• Risk of deadlocks:
 – All peers are waiting for other peers to receive the next packet
• Possible when there is a cycle in the buffer waiting graph
• Remedy?
Deadlock-free Back-Pressure for Rings

• One queue per outgoing link: $O(\log n)$ queues

• Why deadlock-free?
 – “Hop lengths” strictly monotonously decrease when approaching searched ID
2. End-to-End Congestion Control

• Limit rates at which peers can insert new packets
• Feedback from the DHT
 – Overloaded peers mark packets
 – Mark return with overlay acknowledgement
• Peers increase or decrease insertion rate accordingly
 – Additive increase – multiplicative decrease (AIMD)
 – Destination-independent
Evaluation - Throughput

- 128 peers, ModelNet network emulation
 - 21 dual 3.4 GHz Xeon, 2 GB RAM
- Crossload: Peers stop forwarding
Evaluation – Latency

avg. lookup delay [s]

cross-load in %

back-pressure
loss
marking
Retransmissions

![Graph showing retransmissions per peer in % for different loads and methods]

- **Loss**
- **Marking**
- **Back-pressure**

The graph illustrates the retransmissions per peer in % as the cross-load increases from 0 to 8%. The retransmission rate increases with the load for all methods, but back-pressure has the lowest retransmission rate, followed by marking, and finally loss.
Summary

• P2P-IR
• Analysis of a congestion collapse
• Marking performs best: low latency, high throughput
• Back-pressure
 – Deadlock-free with separate queues for each link in the routing table
 – Deadlocks possible with failures or malicious peers
 • Not suitable for a distributed, uncontrolled environment
Thank you for your attention!