
P4 Language and Programmable Data Planes
Praveen Tammana
IIT Hyderabad, India

Email : praveent@cse.iith.ac.in

Rinku Shah
IIIT-Delhi, India

Email : rinku@iiitd.ac.in

Venkanna U
IIIT Naya Raipur, India

Email : venkannau@iiitnr.edu.in

I. MOTIVATION

To support the ever-growing application demands for high
bandwidth, low latency, and high availability, the underlying
network architecture has gone through several changes. For
instance, in the 5G context [1], we have access-edge networks
providing services at the edge and the edges are connected
over core networks to talk to their counterparts in the cloud.
If we go a bit low-level, the infrastructure behind these novel
architectures is also changing fundamentally. Increasingly,
many network functionalities are disaggregated and the
functions that were traditionally running on special-purpose
proprietary hardware targets are now running on general-
purpose commodity hardware such as CPUs, SmartNICs [2],
[3], [4], [5], [6], and high-speed programmable whitebox
switches [7].

Many network targets following Software-Defined
Networking (SDN) [8] architecture separate the control
plane (the brain of the entire network that determines how
packets should be forwarded) and the data plane (process
packets as instructed by the control plane), thus enabling
faster innovation in each plane. Today, the SDN control
plane software is open-sourced and the data plane hardware
is programmable. This means, there is no fixed entity
that dictates how the network works, instead it is up to
the network owner/operator to define whatever s/he wants
and design network protocols that can run on commodity
hardware. There are mainly two types of data plane hardware:
OpenFlow-based [9] and P4-based [10]. OpenFlow-based
SDN followed a bottom-up approach assuming that the data
plane (i.e., switches, smartNICs) has a fixed-function behavior
supporting a small set of fixed protocols, usually defined
in ASIC specs by network equipment vendors (e.g., Cisco,
Juniper, Mellanox). In this bottom-up approach, adding a new
protocol for measuring or controlling datapath takes years,
which implies OpenFlow does not give control over network
behavior at packet-level to network operators.

On the other hand, P4-based SDN followed a top-down
approach and proposed to use protocol-independent pro-
grammable data planes [10] (e.g., smart NICs, Intel Barefoot
Tofino). To be specific, P4 is a domain specific language using
which a network operator tells switches which packet headers
to be recognized and how to process packets, thus being able
to implement new protocols (e.g., key-value lookup [11], ML

reduce operation [12]), novel network functions (e.g., load
balancing [13], NAT, DDoS detection [14]), and simplifies
network management (e.g., Google’s P4 integrated network
stack [15]). To summarize, Software-Defined Networking,
programmable data planes, and P4 language, all together have
opened up a wide range of opportunities to solve network
problems considered difficult and complex in traditional closed
and fixed ASIC-based data planes.

II. OUTLINE AND TOPICS COVERED

The objective of this tutorial is to introduce the audience
to P4 language [10] and P4-related software tools [16] which
can be used to program packet-processing data planes (e.g.,
eBPF [17], DPDK [18], smartNICs [2], switches [7]). The
following topics would be covered:

1) Introduction to P4 data planes: This covers different
architectures and targets available today, what consti-
tutes a P4 dataplane (i.e., parsers, match-action tables,
queues, etc), and then goes deep into two popular
architectures: protocol independent switch architecture
(PISA) and V1 model.

2) P4 language basics: This covers an overview on P4
language constructs, how to install a P4 program on a
data plane target by developing two basic applications
(basic forwarding, basic tunneling) and one advanced
application (stateful firewall).

3) P4 Runtime and the Control plane: This covers the
existing P4 software tools for controlling P4 data plane
(e.g., loading P4 program, updating match-action table
rules, etc).

III. FORMAT OF TUTORIAL

1) Approximate duration of tutorial is 3 hours.
2) We will utilize 50% of allocated time for presentation,

and the remaining 50% for hands-on training.

IV. REQUIREMENTS FOR THE ATTENDEES

• Software and reading material will be provided to partic-
ipants in USBs for offline participants.

• Attendees will be provided with a Virtual Machine (VM)
with pre-installed software (in USBs). They should copy
the VM on their laptop/desktop for hands-on training.

• The minimum configuration requirement for the lap-
top/desktop to run the VM is 4 GB of RAM, 4 CPUs,
and 16 GB of free disk space.



V. INDICATE IF THE TUTORIAL IS SUITABLE FOR HYBRID
IN-PERSON AND ONLINE ATTENDEES

The tutorial is suitable for both hybrid in-person and online
attendees.

VI. INTENDED AUDIENCE OF THE TUTORIAL

1) UG/PG/PhD students good with UG-level computer
networking course.

2) Industry professionals in the networking industry.

VII. BIOGRAPHY OF TUTORIAL PRESENTERS INCLUDING
THEIR EXPERIENCE WITH THE TUTORIAL TOPIC

Praveen Tammana is currently an Assistant Professor in
Computer Science at IIT-Hyderabad. He received his Ph.D.
in computer science from The University of Edinburgh, UK.
Prior, he was a postdoctoral researcher at Princeton University,
USA. His research interests are at the intersection of Systems,
Networks, and Security. His current focus is on designing
and building networked systems that make networks easy
to manage, secure, and robust, by using exciting emerging
technologies such as Software-Defined Networking (SDN)
and P4-based programmable data planes. Praveen has been
primarily working in the SDN domain for the last 8 years,
and published at top networked systems venues such as SOSR,
NSDI, and OSDI.

Rinku Shah is currently an Assistant Professor in the CSE
department at Indraprastha Institute of Information Technol-
ogy, Delhi (IIITD). She has received her Ph.D. degree in
computer science from IIT Bombay. Her research interests lie
in the domain of networked systems. She has worked in the
intersection domain of Software-Defined Networking (SDN),
programmable data planes, and 4G/5G mobile network core.
Her current focus is to design flexible, scalable, and fault-
tolerant systems by leveraging evolving networking technolo-
gies such as SDN and programmable network hardware. Rinku
has 5 years of research experience in the SDN domain and
13 years of teaching experience. Her research is published at
reputed conference venues such as SOSR, ICNP, and APNet.

Venkanna U. obtained his Ph.D. degree from the National
Institute of Technology, Tiruchirappalli (NITT), in 2015. Since
2005, he has been in the teaching profession, and currently,
he is an Assistant Professor in the Department of Computer
Science and Engineering, IIIT- Naya Raipur. He has 10 years
of teaching and research experience. His research interests
include Software Defined Networks, Programmable Networks,
and Security issues in Internet of Things (IoT). He has the
best paper award at IEEE-ANTS 2019 conference. Also, he is
elevated as IEEE senior member in August 2021.

REFERENCES

[1] 3GPP, “5g 3gpp specifications,” https://www.3gpp.org/ftp/Specs/archive/
23 series/23.502/.

[2] “Agilio CX SmartNIC,” https://www.netronome.com/products/agilio-
cx/.

[3] “Intel FPGA,” https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/ds/ds-pac-n3000.pdf.

[4] “NetFPGA SUME,” https://netfpga.org/NetFPGA-SUME.html.

[5] “Pensando Distributed Services Card,” https://pensando.io/wp-content/
uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf.

[6] “Nvidia Bluefield DPU,” https://www.nvidia.com/en- in/networking/
products/data-processing-unit/.

[7] “Intel Barefoot Tofino switch,” https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-series.
html.

[8] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual
history of programmable networks,” SIGCOMM Computer Communica-
tion Review, vol. 44, no. 2, p. 87–98, 2014.

[9] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, 2008.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Computer Communication Review, vol. 44, 2014.

[11] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the SOSP, 2017.

[12] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. R. Ports, and P. Richtárik, “Scaling dis-
tributed machine learning with in-network aggregation,” arXiv preprint
arXiv:1903.06701, 2019.

[13] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the the ACM SIGCOMM Conference, 2017.

[14] T. Chown, “Telemetry and big data workshop,” https:/ /wiki.geant.
org / display / PUB / Telemetry + and + Big + Data + Workshop ? preview =
/148094173/167772344/BD Telemetry workshop sketch analytics v6.
pdf, 2020.

[15] “P4 Integrated Network Stack (PINS).” https://opennetworking.org/
pins/, 2021.

[16] “P4 learning,” https://p4.org/learn/.
[17] “extended Berkeley Packet Filter (eBPF).” https://ebpf.io/.
[18] “Data Plane Development Kit (DPDK).” https://www.dpdk.org/.

https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/ds-pac-n3000.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/ds-pac-n3000.pdf
https://netfpga.org/NetFPGA-SUME.html
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://www.nvidia.com/en-in/networking/products/data-processing-unit/
https://www.nvidia.com/en-in/networking/products/data-processing-unit/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://wiki.geant.org/display/PUB/Telemetry+and+Big+Data+Workshop?preview=/148094173/167772344/BD_Telemetry_workshop_sketch_analytics_v6.pdf
https://wiki.geant.org/display/PUB/Telemetry+and+Big+Data+Workshop?preview=/148094173/167772344/BD_Telemetry_workshop_sketch_analytics_v6.pdf
https://wiki.geant.org/display/PUB/Telemetry+and+Big+Data+Workshop?preview=/148094173/167772344/BD_Telemetry_workshop_sketch_analytics_v6.pdf
https://wiki.geant.org/display/PUB/Telemetry+and+Big+Data+Workshop?preview=/148094173/167772344/BD_Telemetry_workshop_sketch_analytics_v6.pdf
https://opennetworking.org/pins/
https://opennetworking.org/pins/
https://p4.org/learn/
https://ebpf.io/
https://www.dpdk.org/

	Motivation
	Outline and topics covered
	Format of tutorial
	Requirements for the attendees
	Indicate if the tutorial is suitable for hybrid in-person and online attendees
	Intended audience of the tutorial
	Biography of tutorial presenters including their experience with the tutorial topic
	References

